SMARTFLUXX SA15015

Nitrogen membrane module

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Benefits

- Less membrane modules needed per nitrogen system More nitrogen per fibre is produced from Parker hollowfibre membranes than any other in the world
- Use of low pressure standard industrial compressor No high pressure compressor needed to obtain required nitrogen flow
- Energy savings Operation at a low pressure requires less energy
- Reduced CO2 emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre Most tolerant fibre to particle contamination
- Large membrane diameter Lowest membrane module pressure drop
- Strong engineering plastic
 Life-expectancy of more than 10 years

- Factory membrane ageing, pre-delivery No performance decrease over time due to fibre ageing
- Quick start-up time Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements Can be mounted horizontal or vertical
- Low noise operation Radiated noise generated by membrane technology is extremely low
- **No maintenance required** No user serviceable parts
- Small system footprint Less modules needed to produce nitrogen requirements

SMARTFLUXX SA15015

Nitrogen membrane module

Performance data

Typical1) Nitrogen flow rate in m3/hr2) (SCFM)

Providence Or			07		0.5	Provide of					
Purity %	99	98	97	96	95	Purity %	99	98	97	96	95
4 bar g	21.8	29.6	37.4	48.4	59.5	4 bar g	116	116	120	141	155
(58 psi g)	(12.8)	(17.4)	(22.0)	(28.5)	(35.0)	(58 psi g)	(68)	(69)	(71)	(83)	(91)
5 bar g	29.5	42.5	55.5	69.4	83.2	5 bar g	152	164	176	198	211
(73 psi g)	(17.3)	(25.0)	(32.7)	(40.8)	(49.0)	(73 psi g)	(90)	(96)	(104)	(116)	(124)
6 bar g	36.8	54.6	72.3	89.1	105.9	6 bar g	186	206	226	249	262
(87 psi g)	(21.7)	(32.1)	(42.6)	(52.5)	(62.4)	(87 psi g)	(109)	(121)	(133)	(147)	(154)
7 bar g	43.9	65.8	87.8	107.8	127.7	7 bar g	216	244	270	296	299
(102 psi g)	(25.8)	(38.8)	(51.7)	(63.4)	(75.2)	(102 psi g)	(127)	(143)	(159)	(174)	(176)
8 bar g	50.7	76.3	102.0	125.3	148.6	8 bar g	244	278	309	338	347
(116 psi g)	(29.8)	(44.9)	(60.0)	(73.7)	(87.5)	(116 psi g)	(144)	(163)	(182)	(199)	(204)
9 bar g	57.2	86.0	114.8	141.6	168.5	9 bar g	271	308	342	376	392
(130 psi g)	(33.6)	(50.6)	(67.6)	(83.4)	(99.2)	(130 psi g)	(159)	(181)	(201)	(221)	(231)
10 bar g	63.3	94.8	126.4	156.9	187.4	10 bar g	298	334	371	410	431
(145 psi g)	(37.3)	(55.8)	(74.4)	(92.3)	(110.3)	(145 psi g)	(175)	(197)	(218)	(241)	(254)
11 bar g	69.2	102.9	136.6	171.0	205.4	11 bar g	325	360	396	445	472
(160 psi g)	(40.7)	(60.6)	(80.4)	(100.6)	(120.9)	(160 psi g)	(191)	(212)	(233)	(262)	(278)
12 bar g	74.8	110.1	145.5	183.9	222.4	12 bar g	352	386	422	478	511
(174 psi g)	(44.0)	(64.8)	(85.6)	(108.3)	(130.9)	(174 psi g)	(207)	(227)	(248)	(281)	(301)
13 bar g	80.1	116.6	153.1	195.8	238.5	13 bar g	376	408	444	509	548
(189 psi g)	(47.1)	(68.6)	(90.1)	(115.2)	(140.3)	(189 psi g)	(222)	(240)	(261)	(300)	(323)

Maximum pressure drop at Purity: ≤0.2 bar Values between

brackets are indicative imperial values

 $^{\eta}$ The above data represents the typical performance of a single membrane module. Actual performance can vary in the range of ± 13% and is

²⁾ dependent on temperature see Flow Rate Correction below. m3/hr refers to conditions at 1013 mbar(a) and 20°C

Performance certificates only available at standard test condition and never above 11 barg.

Ambient Conditions

Ambient temperature	+2°C to +60°C (+36°F to 140°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C / +60°C (+36°F to 140°F)
Maximum oil vapour content	<0.01 mg/m3 (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	³⁾ Use bulletin S3.1.240
Feed-air consumption at feed-air	³⁾ Use bulletin S3.1.240
temperatures other than 20°C	

³⁾ Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	15 bar g4 (217 psi g) 4)
Design temperature	65°C4 (149°F) 4)
⁴⁾ Membrane operating limits are lower	

Typical Feed-air consumption at nitrogen flow rate in m3/hr2)

(SCFM)

Material

Housing	Aluminum		
Coating	Sulfuric Acid Anodizing [MIL-A-8625F, Type II]		
Services Available on Request			

Material certificates EN10204-2.2 on request

3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1750 x 256/198 mm (68.9" x 10.1/7.8")
Weight	22.2 kg (48.9 lb)
Connection feed-air	G1½" female to ISO 228
Connection nitrogen enriched air	G1½" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	Dual Hose Connection 1½"
Dimensional drawing	Refer to K3.1.415

